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Abstract

The California Global Warming Solutions Act of 2006 requires year 2020 greenhouse gas
(GHG) emissions in the state to be reduced back to 1990 levels. The recently approved Proposed
Scoping Plan expects emissions reductions through land-use policies based on a 4% decrease in
car travel demand by 2020. It is not clear, however, how large the increase in residential density
must be in order to achieve such reductions. Furthermore, results from different strands of the
literature are not yet conclusive about the magnitude of the impact of land-use variables on the
amount of car travel and thus on GHG. This study aims to contribute to the ongoing debate by
implementing a modified two-part model (M2PM) with instrumental variables (IV), a procedure
that respectively takes into account the large mass of observations with zero car travel, and the
possibility of residential self-selection, both of which could otherwise bias the estimates. The
analysis takes advantage of a large dataset on travel patterns and socio-economic characteristics
of more than 7,000 households across the 58 counties in the state of California. The study
calculates the impacts of residential density and jobs/housing balance on vehicle miles traveled
(VMT), and includes measures for the supply of public transportation in one set of the esti-
mations. Results derived from our dataset and model specifications show that VMT elasticities

∗This working paper is part of the author’s dissertation research. Please do not cite without permission. The
study has benefited from comments from Colin Cameron, Deb Niemeier, Colin Vance, and Jim Wilen. All remaining
errors and omissions are solely the responsibility of the author.
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with respect to residential density are considerably larger for the instrumented M2PM specifica-
tions than those from ordinary least squares, linear IV, or non-instrumented M2PM, revealing
potential bias from estimations based on the latter approaches. Although our elasticities are
larger than others found in the recent econometric literature, the impact of residential density
on VMT would not be as large as previously suggested from other recent agency reports unless
very large increases in residential density take place. On the other hand, recent estimates of
the elasticity of VMT with respect to the price of gasoline imply that moderate increases in the
price of gasoline would suffice to reduce travel by the required 4%. The comparisons suggest
that although pricing measures and land-use policies should not necessarily be seen as mutually
exclusive options, the former might be more effective in reducing the externalities derived from
automobile use.

1 Introduction

In 2006, the state of California passed the Assembly Bill 32 - California Global Warming So-
lutions Act of 2006. The document, the first ambitiously addressing climate change at a large
scale in the United States of America (US), requires year 2020 greenhouse gas (GHG) emissions
in the state to be reduced back to 1990 levels. The requirement translates into an elimination
of 173 metric tons of carbon dioxide equivalent (MMTCO2e) compared to the business-as-usual
scenario. 1 In December of 2008, an scoping plan including the mitigation strategies that will
attain the reductions was approved (CARB, 2008).

The reduction of greenhouse gases (GHG), the leading objective of climate policy, has a
particularly complicated task in the transportation sector. In the case of California, this sector
contributes with 38% of all GHG emissions (CARB, 2007b). Transportation emissions can
mainly be reduced by reducing the carbon content of fuels, improving motor efficiency, and
importantly, by reducing travel. Throughout the building process of an scoping plan, land-
use policies to reduce GHG from the transportation sector stood out for its lack of rigor in
the calculation of potential vehicle miles traveled (VMT) reductions. The recently approved
Proposed Scoping Plan (CARB, 2008) expects reductions of 5 MMTCO2e through land-use
policies which follow after assuming a drop by 4% in car travel demand by 2020. It is not clear,
however, from CARB’s report how large the increase in residential density must be in order to
achieve the 4% reduction in VMT. 2

1This figure is based on the preliminary projected 600 MMTCO2e for 2020 and the 427 MMTCO2e 1990 level
officially adopted in December 2007 (CARB, 2007b).

2The 4% reduction is the median value of the impacts of combined land use and transit improvements over a
10-year period in the studies surveyed in Rodier (2008). The studies surveyed largely differ in their methodology,
location and magnitudes of assumed improvements.
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The estimated GHG reductions to be achieved through such policies in earlier drafts such as
CAT (2007) were driven by presumed reductions of 10% to 30% in VMT. No further details were
provided on such reductions in CAT’s report, whereas ETAAC’s (2008) 20%-30% estimate is
based on JHK and Associates (1995) who compared mean VMT between communities or areas
with different levels of residential density and other land-use characteristics (but which are also
different in other respects that could be affecting the divergence.). Based on previous literature,
Ewing et al. (2007), considered that a typical household in a compact development community
would travel 30% vehicle miles less compared to a typical suburban household, while CEC’s
(2007) report on the links between land use and transportation also found similar figures.

Furthermore, in spite of the aforementioned impacts of land-use characteristics on VMT,
there are a number of recent econometric studies that find little or no impact of land-use variables
on the amount of travel and thus on GHG (Bento et al. (2005), Brownstone and Golob (2009),
Fang (2008)). Our study aims to contribute to this debate by implementing a procedure that
among other controls, takes into account the following two characteristics that could bias results
otherwise: 1) large mass of observations with zero car travel, and 2) self-selection of the decision
on where to locate given travel preferences. The analysis takes advantage of a large dataset on
travel patterns and socio-economic characteristics of households (HH) in the 58 counties in the
state of California. 3 This study considers two land-use-related variables (residential density,
and jobs/housing balance), and includes a variable for the supply of public transportation in one
set of the estimations. Some other variables such as road network design and density, population
and employment centers, and availability of recreational areas, are relevant in terms of land-use
policy, however these are commonly correlated with the two included in our study. Therefore,
as noted in Brownstone and Golob (2009) residential density, the preferred land-use variable in
this type of studies, should be interpreted as a proxy for the set of land-use characteristics that
could have an impact on VMT.

Two-part models (2PM), originally motivated in Cragg (1971) and Duan et al. (1983) have
been widely applied in health economics studies in order to correct for the bias resulting from a
large mass of zero doctor visits observations (Dow and Norton, 2003). In these models, the first
part estimates the probability of incurring in a certain activity (e.g. medical expenses, visits,
or travel by car in our case). The second part of the model estimates the level of that activity
conditional on its occurrence. When the dependent variable of the second part of the model is
log-transformed to ensure its positivity, the presence of heteroskedasticity can severely bias the
results (Duan et al. (1983), Manning and Mullahy (2001)). We follow one of the suggestions
in Mullahy (1998) implementing a modified version of the 2PM approach. The modified 2PM
(M2PM) ensures the positivity of the second part’s outcome with a direct estimation of the

3Our final samples are more than twice as large as those used in previous studies for travel demand in California
(Fang (2008); Brownstone and Golob (2009)).
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dependent variable in levels (i.e., no log-transformation required).
On the other hand, residential self-selection, largely acknowledged in the literature is a

particular case of the problem of endogeneity of regressors. Instrumental variables (IV), have
been considered among a set of strategies aimed to correct for self-selection (Bhat and Guo
(2007); Mokhtarian and Cao (2008)). This approach eliminates the endogeneity (i.e., correlation
between the error term and the regressors) by finding so-called instruments that are correlated to
the endogenous regressor (i.e., residential density or jobs/housing balance) but not correlated to
the error term. The latter condition rules out the possibility of the instruments being regressors
in the original equation; in other words, the instruments are variables that affect the dependent
variable only indirectly through their impact on the endogenous regressor .

A number of important characteristics distinguish our study from other recent econometric
studies. In contrast to the German study from Vance and Hedel (2007), that implemented
an IV-2PM, ours also incorporates a modified version of the 2PM to avoid potential problems
derived from heteroskedasticity. Both Fang (2008), and Brownstone and Golob (2009) base
their estimations on the same California dataset. Estimates from the former do not address
self-selection bias, while the latter identifies the coefficients of an structural equations model by
choosing a specific recursive structure between residential choice, VMT and fuel consumption
that relies on debatable exclusion restrictions.4 Bento et al. (2005) include several city-wide
measures of urban form in order to estimate the impacts of such variables on mode choice, travel
demand and vehicle ownership in the US. Although the use of variables with a larger spatial
scale diminishes the risks of them being correlated with the unobserved travel preferences, the
impact of variability of such characteristics at smaller geographical delimitations would remain
unknown. Nevertheless, we include a transit variable only available at the urban area level for
one set of our specifications. 5

At a glance, results derived from our dataset and model specifications show that VMT
residential density elasticities are considerably larger for instrumented M2PM specifications than
those from ordinary least squares, linear IV, or non-instrumented M2PM, revealing potential bias
from estimations based on those approaches. Our elasticities are also larger than others found
in the recent econometric literature. However, unless very large increases in residential density
are enforced, the impact of residential density would not be as large as previously suggested
from other recent reports such as CEC (2007), Ewing et al. (2007), CARB (2007a), and ETAAC
(2008).

The next section extends on the sources and characteristics of our assembled dataset. The
description of our estimation strategy is followed by the results for seven different specifications.

4The model in Brownstone and Golob implies that, for example, the number of children in a household affects the
residential choice but not VMT

5Neither Fang (2008) nor Brownstone and Golob (2009) studies included transit variables.
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Estimated impacts from changing land-use characteristics should be ultimately contrasted to
other options such as fuel or travel taxation - a discussion section considering alternative policy
paths precedes the conclusions.

2 Data

Data from several sources were used to build a dataset with the variables needed for our study.
Travel data from the 2000-2001 California Statewide Household Travel Survey were obtained
from Caltrans. The survey included travel and socio-economic information from 17,040 house-
holds (HH) across 58 counties. Spatial information, available for most of the HH home addresses
and their travel destinations, was exported to GIS software to calculate the distances traveled,
and to retrieve the census tract, zip code tabulation area (ZCTA), and urban area where each
HH was located. 6 Data on residential density and other characteristics at the census tract level
were obtained from the Census 2000 Summary File 3. 7 The number of business establishments
at the ZCTA level was obtained from the Census’ County Business Patterns for the year 2000.
Transit data, only available for urban areas, come from the National Transit Database of the
Federal Transit Administration.

Our final sample (finalall) consists of 7,666 HH (of which 4,098 HH are located in urban areas
- the finalurb sample). The largest loss in observations is due to the lack of complete information
necessary to calculate travel distance. Other losses occurred due to the restriction of our analysis
to weekday travel8, the discarding of observations with inconsistent travel data (e.g., estimated
speeds that do not match the reported travel mode), and observations dropped due to missing
income data. Table A9 summarizes the causes leading to sample size reductions, and tables A7
and A8 respectively describe and summarize the variables used in in our estimations.

Descriptive statistics of the variables in A8 do not largely differ across the original, finalall
and finalurb samples.9 The median HH annual income falls in the category of $35,000 to $50,000
for the finalall and finalurb samples. In all samples, average HH size and number of vehicles are
both about 2, while the average number of workers in a HH is roughly half its size. Across the

6Cartographic boundary files were obtained from the Census Bureau’s TIGER geographic database. These files
already included data on the area occupied by each tract and ZCTA.

7The number of housing units for each ZCTA was obtained from the Census’ Gazetteer files.
8A small percentage (954 out of 17,040 HH) of the original sample was surveyed for two continuous weekday and

weekend days.
9Table A8 shows the means of these variables for each sample. It is important to note that income categories for

the original sample significantly differ from the two samples used in our study. This is so because households with
income category equal to 9 (i.e., non-reported) were discarded in our final estimations. Also noticeable is the increase
in the mean of residential density from the finalall to the finalurb samples. This is not surprising since urban areas
are by definition more densely populated than rural ones (in terms of residential density, our original sample shows
2010.7 and 286.4 housing units per square mile respectively).
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three samples, age of the oldest member of the HH is in average between 51 and 55 years, and
42% of the HH have a member with an education level higher or equal to a college degree. The
average residential density is 1518, 1570, and 2491 housing units per square mile for the original,
finalall, and finalurb samples respectively. In the finalall sample, residential density attains a
minimum of 0.11 in a census tract in Inyo County, and a maximum of 66,173 corresponding to
a census tract within the boundaries of San Francisco County. Furthermore, 72% of the HH in
the original and finalall samples are located in urban areas.10

The number of business establishments is roughly 6% of the number of housing units across
the three samples. In the finalurb sample, each urbanized area is served in average by 2759
route miles, and average transit density is nearly 6 miles. Importantly, on average, only 8% of
units were built before 1940 with a maximum of 88% in an Alameda County census tract and,
on average, 26% of the state’s population is other than white (with a maximum of 98% and a
minimum of 2% in census tracts in Los Angeles County and Riverside, respectively). About 25%
of the HH in the final samples reported no car-trips in the surveyed day (i.e., dr=0.75), which
motivates the implementation of estimation techniques addressing skewness and non-linearity
associated with the dependent variable (vmt).

Means of the regional dummies show the number of HH from a specific region as a per-
centage of the total sample. The shares are practically identically between the original and
finalall samples with the SCAG (20%), Rural (14%), and MTC (9%) regions being the most
predominant, and each of the other 14 regions representing between 3% and 7% of the observa-
tions. However, in the finalurb sample, no observations fall within the rural regions 1, 6, and 9,
drastically changing the spatial distribution of the sample. Nevertheless, our estimations do not
require sample weighting measures since our interest is in finding structural-causal relationships,
rather than in describing correlations between population variables. When the objective is the
former and there is no endogenous stratification, the use of sample weights to obtain consistent
estimates is no longer necessary (Cameron and Triverdi, 2005).

Figure 1 plots the mean daily HH VMT at different levels of residential density, mix, and
transit.11 The figure suggests that HH located in census tracts with more housing units per
square mile tend to drive less.12 The trajectories for the lines showing the relationship between
VMT and mix and transit are not as smooth as that for residential density. Moreover, an
expected negative correlation between transit and vmt is not clear from Figure 1. The following

10Both urbanized areas and urban clusters are classified as urban areas according to the Census Bureau. As
mentioned, transit data were only available for urbanized areas (i.e., neither rural areas nor urban clusters are
included in the finalurb sample).

11The classification in horizontal axis is based on the percentiles for residential density, mix, and transit in our
finalall sample (finalurb for transit).

12We also observe a lower mean daily HH VMT for HH located in urban areas (24.6) than those located in census
tracts classified as rural (29.9).
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section describes the methodology we adopted to obtain a more precise estimate of the impact
of these land-use variables on vmt.

Figure 1: Mean daily VMT per HH for different residential density classes
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3 Estimation Strategy

Figures 1 suggests that some correlation exists between residential density, land-use mix, and
transit with HH VMT. However, in order to generate consistent causal statements between the
land-use variables and vmt, we need to consider that 1) other socio-economic variables might
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affect the level of VMT that a HH chooses, 2) there exists a mass of zero-values as shown in Figure
2, which can result in biased estimates if regular ordinary least squares (OLS) are performed,
and 3) residential location self-selection, largely acknowledged in the literature (Bhat and Guo
(2007), Mokhtarian and Cao (2008)), could derive in biased estimates of the impact of resdes
and mix on vmt.

Figure 2: Frequency distribution of HH daily VMT0
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We address problems 1 and 2 via the estimation of a multivariate two-part model. This
approach has been widely implemented to estimate health expenditures (Dow and Norton, 2003),
and Vance and Hedel (2007) applied this model to estimate the impact of urban form on VMT
in Germany. Finally, in order to correct for potential self-selection bias, we employ instrumental
variables. 13 Our selection of instruments (variables that explain resdes and mix, but not vmt)
follows suggestions from previous studies (Boarnet and Sarmiento (1998); Vance and Hedel
(2007)).

13Mokhtarian and Cao (2008) review a number of estimation strategies, including instrumental variables, in presence
of self-selection in the context of residential location and travel behavior.
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3.1 The Two-Part Model (2PM)

Problems arising from a large mass of zeroes in the dependent variable as shown in Figure 2 are
similar to those from data censoring (i.e. inconsistent-biased estimates due to non-linearity in the
true model). Originally, the 2PM arised as a relaxation to some of the assumptions in the tobit
model (Cragg, 1971). Another estimator used in similar circumstances is the heckit, however,
as noted by Duan et al. (1983), Dow and Norton (2003) and Vance and Hedel (2007), the 2PM
might be more appropriate if interest lies in the actual outcome. This is, zero vmt observations
are treated as real zeroes instead of as latent variables. Although the actual outcome can always
be recovered from the tobit and heckit models, and thus a correct interpretation is possible,
it involves further calculations and assumptions.14 The 2PM incorporates the probability of
observing vmt>0 yielding the following expected value of vmt for any of the n observations:

E[vmt|x] = Pr[vmt > 0|x]× E[vmt|vmt > 0, x] (1)

where x is a column vector that includes the k explanatory variables for a given observation.
The first part of the 2PM can be derived from underlying economic choice. An index function

model or a random utility model would yield the following probability of choosing to drive (i.e.
vmt>0 or dr=1):

Pr[dr = 1|x] = F (x′β1) (2)

where β2 is a column vector with the k coefficients, and F is the cumulative density function
(cdf) of the error portion of an index function (or the cdf of the difference of the errors from the
random utilities associated with driving and not driving).

The result in equation (2) is valid for densities symmetric around zero as it is the case for
the standard normal. The probit model is the natural candidate to estimate (2) and we assume
F to be the cdf of the standard normal (Φ).

In most of studies implementing two-part models, the second part estimates a log-linear
model in order to ensure positive values of the dependent variable. Vance and Hedel (2007), how-
ever, run this regression in levels (i.e., vmt as the dependent variable instead of ln(vmt)), prob-
ably due to the potential problems related to the retransformation from log to levels described
in Manning and Mullahy (2001). In particular, if the errors are not homoskedastic-normally dis-
tributed, the retransformation E[y|y > 0, x] = exp(x′β2 + 0.5σ2) from E[ln(y)|y > 0, x] = x′β2

is no longer valid. A column vector with the k coefficients from the second part of the 2PM
is represented by β2. Solutions for failing the non-normality assumption such as Duan’s (1983)
smearing estimator are simple, however, if the errors are heteroskedastic, further steps and

14Duan et al. (1983), Dow and Norton (2003), andVance and Hedel (2007) discuss this choice in further detail.
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assumptions are necessary.
Given the aforementioned considerations, we opted for an estimation framework that directly

estimates the conditional mean of vmt without compromising the positivity of the outcome.
Mullahy’s (1998) Modified Two-Part Model (M2PM) specifies the second part as an exponential
conditional mean (ECM): E[vmt|dr = 1, x] = exp(x′β2). It follows that the expected value of
vmt for the whole sample (zeroes and positive vmt) is:

E[vmt|x] = Φ(x′β1)exp(x′β2) (3)

Marginal effects in the M2PM are not readily available from the coefficients as in the OLS
case. For continuous variables we instead need to derive them through the following formula
which is the partial derivative of E[vmt|x] in equation (3) with respect to the variable of interest
xk. 15

∂E[vmt|x]
∂xk

= β2kΦ(x′β1)exp(x′β2) + β1kφ(x′β1)exp(x′β2) (4)

Where φ is the standard normal density (i.e. the derivative of the normal cdf (Φ)). For
indicative variables the following formula provides the appropriate marginal effects. In (5),
subscripts in the x vector indicate whether the indicative variable of interest (xd) is evaluated
at zero (x0) or at one (x1).

∂E[vmt|x]
∂xd

= Φ(x′
1β1)exp(x′

1β2)− Φ(x′
0β1)exp(x′

0β2) (5)

Interest often lies in the elasticity of vmt with respect to xk. In such cases the following is
calculated:

∂E[vmt|x]
∂xk

× xk

E[vmt|x]
=

(
β2k + β1k

φ(x′β1)
Φ(x′β1)

)
xk (6)

3.2 Self-selection and the endogeneity of regressors

A common estimation problem found when estimating the relationship between travel decisions
and the built environment is that unobserved travel preferences might lead to choose a particular
residential location in the first place (self-selection). This is, lower levels of car travel in high
residential density areas (or areas with more businesses) could be the result of HH residential

15If disturbances were not homoskedastic and we were to run a log-lin model, equations (4) and (6) would need also
to include the partial derivative of σ2 with respect to xk, such that for instance, (4) would become: ∂E[vmt|x]/∂xk =
(β2k + .5∂σ2(x)/∂xk)Φ(x′β1)exp(x′β2 + .5σ2(x)) + β1kφ(x′β1)exp(x′β2 + .5σ2(x)). With the M2PM we avoid the
specification of the heteroskedastic disturbances, however we incur in further calculation costs due to the non-linearity
of the estimators.
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location choice given prior travel preferences. 16 When this is the case we cannot distinguish
between the self-selection and the built environment induced effects. Self-selection is a special
case of the endogeneity problem that violates the OLS assumption of explanatory variables being
uncorrelated with the error term, yielding biased estimators except for those for variables not
related to the unobservable (Cameron and Triverdi, 2005).

Our approach to correct for self-selection follows that from Boarnet and Sarmiento (1998) and
Vance and Hedel (2007), introducing instrumental variables (IV) to purge the estimates from the
effect of unobserved travel preferences on resdes (mix ). In order to implement an IV regression
we must find at least as many exogenous variables explaining the endogenous regressors but
not vmt, as endogenous regressors we have. 17 Potential valid instruments for resdes and mix
are: the percentage of units built before 1939 (pre40 ), the percentage of population other than
white (nonwhite), and the percentage of family HH (famHH ). 18 These variables are a) likely
to be correlated with resdes (mix ), but b) unlikely to affect travel behavior except through the
indirect impact that those variables have on resdes (mix ). Formal statistical tests are presented
in the following section as a check for their validity.

4 Results

Table 1 shows marginal effects (mfx ) and statistical tests for the seven Instrumental Variables
M2PM (IVM2PM) specifications. Models (1)-(3) are based on the finalall sample, whereas
models (4)-(7) include the transit variable from the only-urban sample. Most of the coefficients
are statistically significant at the 5% level. Kleibergen-Paap (KP) tests the relevancy of the
instruments, the null hypothesis being that the instruments do not explain the endogenous
regressors. While a rejection of the KP test lends support to the set of instruments used, the
overidentification (OID) test supports the validity of the instruments whenever we fail to reject
the null. The specific OID tests, are the Amemiya-Lee-Newey (ALN) minimum χ2 for the probit
and the Hansen’s J for the ECM model. 19

Model (1) is our preferred model among those with no transit data. Although mix is sta-
tistically significant in (2), it no longer is when the model includes also resdes. Furthermore,
the validity of the instruments is rejected in (2). Along the same lines, we do not consider

16We treat transit as exogenous given its large geographical scale.
17More formally, the instruments should be correlated to the endogenous regressor but not to the error term, which

rules out the possibility of the instruments being regressors in the original equation.
18These variables were also obtained at the census tract level from Census 2000.
19KP, ALN, and Hansen’s J tests statistics were calculated with the overid STATA routine (Baum et al., 2006).

OID tests are aimed to test the validity of the instruments (i.e., not correlated with the error term from equation
(2) or from the ECM model). Hence, the two statistical conditions for any set of variables to be instruments for the
endogenous regressors, relevancy and validity, are tested through the KP and OID tests respectively.
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either models (5) or (6) as the best. Residential density remains statistically significant across
the different specifications and for that reason we report detailed estimations for (4), rather
than (7) which includes transit as the only land-use variable. Finally, it can be seen that the
pseudo−R2 does not show much variation between the models. 20

Tables 2 and 3 respectively show the results for our preferred models with and without
public transportation data. Marginal effects were computed at the mean values of the regressors
(i.e., x = x̄) using the formulas in equation (4) and (5) for continuous and indicative binary
variables respectively. The reported standard errors (in parenthesis) were obtained through
bootstrap replications. Not reported here, average marginal effects (the sum of the mfx for each
observation divided by n) yielded comparable results to those at the mean values.

4.1 Results for the finalall sample (no transit data)

Table 2 reports the first and second parts of the IVM2PM, as well as the marginal effects (mfx )
of each variable on vmt in model (1). This model, which includes resdes as the only land-use
variable, is our preferred model for the finalall sample.

All mfx on vmt are statistically significant and coefficients and mfx have the expected signs
in all of the specifications (including the coefficients at each of the two parts of the IVM2PM).
Higher levels of education in the HH, HH size, number of vehicles, income and percentage of
workers in the HH, are all positively correlated with vmt. On the other hand, the age of the
oldest member of the HH, urban HH, and the residential density of the census tract where the
HH is located are all negatively correlated with vmt.

4.2 Results for the finalurb sample (with transit data)

The signs of the mfx for this model that includes transit are the same as those from table
2. One difference is that the mfx for inc3 is also not statistically significant for this model.
The coefficient for eduh in the probit part is not statistically significant and its mfx is lower if
compared to that from table 3. Moreover, mfx as well as the first and second part coefficients for
transit are all not statistically significant. The mfx of resdes is lower compared to that obtained
in model (1), and its coefficient for the second part is only statistically significant at the 10%
level. In fact, not considering the regional dummies, only the coefficients for work, hhsize, nveh,
eduh, and the constant are statistically significant at the 5% level in the second part of this
specification. The latter finding suggests that in urban areas, age, income levels, and residential

20Several goodness-of-fit measures have been proposed for non-linear estimators. So-called Pseudo−R2 is one class.
For both parts of the IVM2PM we use R2 = 1−RSS/TSS, where RSS is the residual sum of squares, and TSS is the
total sum of squares. Amemiya (1981) refers to this measure as Efron’s R2 in the probit case. Other measures based
on log-likelihood values cannot be computed from our results obtained thorugh STATA Newey’s twostep ivprobit.
STATA and Mata codes for all the calculations in the study are available upon request from the author.
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Table 2: IVM2PM estimates (finalall sample)
(1) IVM2PM

variable I. dr=1,0 II. vmt(vmt>0) vmt (vmt>=0)
coeff std. err. coeff std. err. mfx std. err.

resdes -0.00009 0.00001** -0.00009 0.00002** -0.00278 0.00048**
age -0.00511 0.00122** -0.00161 0.00114 -0.07879 0.02679**
work 0.66599 0.05168** 0.23810 0.05114** 10.92029 1.16847**
hhsize 0.16332 0.01885** 0.12190 0.01372** 4.13738 0.33464**
nveh 0.18257 0.02252** 0.09995 0.01561** 3.79045 0.40112**
eduh 0.17120 0.04062** 0.11181 0.03542** 4.00194 0.89306**
inc2 0.31629 0.07389** -0.13589 0.12632 0.73750 2.02374
inc3 0.58796 0.07781** -0.04040 0.12405 4.45611 2.02300**
inc4 0.77544 0.08032** 0.10559 0.12531 8.94348 2.09714**
inc5 0.77565 0.08067** 0.22965 0.12471* 12.10060 2.10993**
inc6 0.77254 0.09416** 0.31653 0.12774** 14.52842 2.30103**
inc7 0.85291 0.10556** 0.41141 0.13015** 18.20045 2.43595**
inc8 0.55279 0.12638** 0.32775 0.13906** 12.72168 2.86719**
ur 0.20613 0.04764** -0.11264 0.04250** -0.81164 1.16229
cons -0.97089 0.13290** 3.16144 0.16280** - -
KP LM 361.120 (0.0000)** 291.98 (0.0000)** - -
OID tests 4.100 (0.1288) 2.0537 (0.3581) - -
Pseudo−R2 0.1957 0.1181 -
Observations 7666 5796 7666

*Statistically significant at the 10% level, **significant at the 5% level. Heteroskedasticity-robust standard errors
reported for I and II. Standard errors for mfx calculated through 299 bootstrap replications. Regional dummy
variables not shown in the table (reg1 dropped to avoid matrix singularity). KP rank LM test, and OID tests are
χ2-dstributed with (L-K+1) and (L-K) degrees of freedom respectively (p-value in parenthesis). Where L is the
number of excluded instruments and K is the number of endogenous regressors. The OID for I is the
Amemiya-Lee-Newey minimum χ2, while Hansen’s J test is reported for II.

density do not affect the amount of vehicle travel once the decision to drive has been taken. As
previously shown in table 1, both KP and OID tests provide confidence about the validity and
relevance of the instruments.

4.3 Elasticities for all the models

Tables 1, 2, and 3, showed coefficients and mfx for the explanatory variables under different
model specifications, however, of particular interest are the elasticities of vmt with respect to the
land-use variables. These are calculated with the formula in equation (6) and reported in Table 4
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Table 3: IVM2PM estimates (finalurb sample)
(4) IVM2PM

variable I. dr=1,0 II. vmt(vmt>0) vmt (vmt>=0)
coeff std. err. coeff std. err. mfx std. err.

resdes -0.00007 0.00001** -0.00003 0.00002* -0.00119 0.00038**
age -0.00358 0.00161** -0.00207 0.00145 -0.07048 0.03299**
work 0.64338 0.07046** 0.21456 0.06423** 9.30792 1.42643**
hhsize 0.17695 0.02600** 0.11998 0.01730** 3.85420 0.40045**
nveh 0.19180 0.03257** 0.13336 0.02360** 4.24787 0.59355**
eduh 0.05693 0.05748 0.11589 0.04801** 2.90637 1.26606**
inc2 0.27681 0.10990** -0.10143 0.21295 0.83835 3.1751
inc3 0.50854 0.11302** -0.09985 0.20801 2.47562 3.2073
inc4 0.77549 0.11668** 0.10844 0.20826 8.17560 3.35179**
inc5 0.76784 0.11651** 0.20886 0.20899 10.45821 3.26664**
inc6 0.78684 0.13292** 0.28487 0.21282 12.52687 3.34738**
inc7 0.81283 0.14331** 0.38898 0.21186* 15.64128 3.67576**
inc8 0.41498 0.16567** 0.34372 0.22029 10.66692 3.78058**
transit -0.00514 0.01338 -0.01325 0.00946 -0.31928 0.2125
cons -0.34642 0.20951** 2.75898 0.23571** - -
KP LM 275.750 (0.0000)** 216.4 (0.0000)** - -
OID tests 3.314 (0.1907) 0.039 (0.9803) - -
Pseudo−R2 0.1885 0.1198 -
Observations 4098 3130 4098

*Statistically significant at the 10% level, **significant at the 5% level. Heteroskedasticity-robust standard errors
reported for I and II. Standard errors for mfx calculated through 299 bootstrap replications. Regional dummy
variables not shown in the table (reg2 dropped to avoid matrix singularity). KP rank LM test, and OID tests are
χ2-dstributed with (L-K+1) and (L-K) degrees of freedom respectively (p-value in parenthesis). Where L is the
number of excluded instruments and K is the number of endogenous regressors. The OID for I is the
Amemiya-Lee-Newey minimum χ2, while Hansen’s J test is reported for II.

for each of the seven specifications. It is important to note that the mfx and elasticities for resdes
under the IVM2PM models are considerably larger than the ones for the non-instrumented, and
non-zero corrected specifications, potentially revealing the biasness of estimates from studies
not correcting for these characteristics. 21 The elasticity for mix is also negative and seems
to be larger than that for resdes, however, as mentioned before, the former is statistically
significant only in model (2). The elasticity of vmt with respect to transit is also negative but
only statistically significant in models where it is not combined with resdes. From this point, we

21Elasticities from the IVM2PM are about twice as large as those from OLS. Outputs for models not reported are
available upon request from the author.
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focus our attention to the impact of resdes, which is the variable showing statistically significant
coefficients whenever it is included, and for which the instruments are valid and relevant as
shown in tables 1 and 2.

Table 4: Elasticities
Model

(1) (2) (3) (4) (5) (6) (7)

resdes
-0.1898

-
-0.1934 -0.1399

-
-0.1622

-
(0.0346)** (0.0408)** (0.0454)** (0.0507)**

mix -
-0.4442 0.0524

-
-0.2118 0.1486

-
(0.1099)** (0.1328) (0.1341) (0.1515)

trans - - -
-0.08611 -0.1476 -0.0814 -0.1569
(0.0575) (0.0564)** (0.0580) (0.0562)**

*Statistically significant at the 10% level, **significant at the 5% level. Standard errors calculated through 299
bootstrap replications in parenthesis. See Table 1 for further statistics for each model specification.

Our results imply that, everything else equal, a 10% in residential density would reduce
vmt by 1.9% (1.4% in the urban sample with transit data). This elasticity is larger than the
reported in previous econometric studies for the US and specifically for California. However,
the magnitude of this impact is still low considering reasonable ranges for policies aimed to
increase residential density.22 For instance, an intensive policy aimed to increase residential
density by 25% in San Joaquin county would reduce daily HH vmt from 34.2 to 32.6. Similarly,
in Sacramento, the reduction under the same policy would be of about 1 daily vehicle mile,
from 24.5 to 23.4. Clearly, annualizing and adding up households increases the figure, however
this type of policies should ultimately be contrasted to others potentially more effective and less
invasive.23

Fang (2008) suggests that specifications that do not incorporate mechanisms for correcting
the endogeneity of residential density provide an upper bound for the magnitude of its impact
on VMT. However, as shown by our results and previous studies (Boarnet and Sarmiento (1998);
Vance and Hedel (2007)), IV specifications yield a larger (in magnitude) impact of residential
density on VMT. Importantly, aside from the logic of their choice, the selection of instruments
appears to suffice statistical tests of their relevancy and validity.

The fact that not all the variation in residential density is used when IV are implemented

22This figure is considerably larger than the implied -0.12 elasticity in Brownstone and Golob (2009). In line with
our non-instrumented estimations, Fang’s (2008) elasticity, which does not directly address self-selection is only -0.024
for cars.

23Although there is recent evidence of a reduction in the short-run price elasticity of gasoline demand (Small and
Van Dender (2007); Hughes et al. (2008)), the impact of gasoline price changes on VMT could still be important with
increases in the tax on gas. The discussion in the next section extends on this.
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might as well be playing a role in this result (i.e. the problem of heterogenous responses across the
sample (Angrist and Krueger, 2001)). However, aside from the KP tests suggesting the relevance
of the instruments, OLS regression of resdes on the set of instruments has a particularly large
R2 (.46 for finalall and .42 in finalur) indicating that not much variation in resdes is lost.
Measurement error in the endogenous variable is a plausible cause for the inflated coefficient if
we consider resdes as a proxy for a set of land-use characteristics affecting VMT. As mentioned
in Vance and Hedel (2007), the higher in magnitude coefficients for resdes that result under
IV are consistent with corrections of the attenuation bias. Further work would be required to
identify the exact causes for the higher negative impact of residential density on VMT when IV
estimation is implemented.

5 Discussion

In California, average gasoline prices reached a 5-year minimum of $1.73 per gallon in the
second week of December 2008. This occurred after hitting historical peaks of $4.58 per gallon
six months earlier and averaging $3.29 in the last two years. 24 The demand for gasoline and
for travel, however, have shown to be rather irresponsive to changes in gasoline price. Moreover,
recent studies show that that the responsiveness has been reduced in later years (Small and
Van Dender (2007); Hughes et al. (2008)). Nevertheless, as shown in table 5, pricing policies
such as gasoline taxes might be more effective in reducing VMT. 25

According to Parry and Small (2005), and implicitly in Small and Van Dender (2007) and
Brons et al. (2008), travel adjustments represent between 30% and 70% of the total impact of
gasoline price on gasoline demand. Hughes et al. (2008) estimate short-run price elasticities
of gasoline demand obtaining a range of -0.033 to -0.077 similar to those values from Small
and Van Dender (2007). 26 The latter also estimates long-run gas price elasticities for both
gasoline demand and VMT. The VMT gas price elasticities for Hughes et al. (2008) reported in
table 5 are calculated considering that the impact of gasoline price on VMT is, as in Small and
Van Dender (2007), 32% of that on gasoline demand. Midpoints (MP), upper bound (UP) and
lower bound (LO) estimates for short-run and long-run VMT gas price elasticities are presented
in table 5 for four recent studies, clearly showing a larger impact in the long run. Given the

24Average prices for the US show similar trajectories but with slightly lower prices at each point in time ($1.61,
$3.97, and $2.83 respectively.)

25A somewhat related and more direct intervention would be pay-as-you-drive schemes.
26As part of their optimal gas tax calculations for California, Lin and Prince (2009) used an estimated -0.065

short-run VMT elasticity with respect to the price of gasoline. This estimate is lower than those reported in Brons
et al. (2008) but larger than those from Small and Van Dender (2007), and Hughes et al. (2008). However the model
in Lin and Prince (2009) did not control for potential recent shifts in the relationship between gasoline price and
demand for travel.

17



nature of land-use changes, relevant comparisons of the impacts of residential density to those
from gasoline price on VMT require long-run estimates of the impact of the latter.

Table 5: VMT gasoline price elasticities
VMT gas price elasticities

Short Run Long Run
MP LO UP MP LO UP

Brons et al. (2008) -0.1100 -0.1000 -0.1200 -0.2950 -0.2900 -0.3000
Hughes et al. (2008) -0.0176 -0.0106 -0.0246 NA NA NA
Parry and Small (2005) NA NA NA -0.2200 -0.0600 -0.5400
Small and Van Dender (2007) -0.0330 -0.0216 -0.0452 -0.1500 -0.1066 -0.2200
The studies from Hughes et al. (2008) and Small and Van Dender (2007) estimate models using US data.
We only consider the estimates from the Three Stage Least Squares specifications of the latter (i.e., OLS
not considered). Parry and Small (2005) consider values from the existing literature, while Brons et al.
(2008) estimate elasticities from a meta-analysis of existing worldwide estimates. Our upper and lower
bounds for the latter study consider both their own and those estimates they report from previous studies.

Table 6: Alternative policies for a 4% reduction in VMT
MP LO UP

Residential density increase 24.6% 20.7% 28.6%
Gasoline price increase 20.1% 13.6% 26.7%
Percentages are based on elasticities from tables 4 and 5

Table 6 shows MP, UP, and LO estimates of the required (separate) increases in the price
of gasoline and residential density that would induce the 4% VMT reductions from land-use
assumed in CARB (2008). 27 For residential density increases we use the smallest and largest
in magnitude estimates from table 4. Upper bound increases from both policy instruments are
similar, however the lower bound increase required for gas price is only two thirds of that for
residential density. Midpoint estimates from table 6 show that independent increases of 24.6%
or 20.1% would be respectively needed in residential density or gas price to achieve the 4%
VMT reduction by 2020. 28 Given the similar sizes of the impacts of each policy, technical and
political considerations could become more relevant in the design of GHG mitigation strategies.

27Lower (upper) bound for gas price increases are calculated with the maximum (minimum) of the studies’ long-run
midpoints in table 5.

28Among the long-run estimates in Table 5, only Small and Van Dender (2007) considered recent shifts in elasticities
(via the utilization of 1997-2001 averages for one set of their calculations). In order to generate another long-run
estimate accounting for recent shifts in the size of the impact, consider multiplying the midpoint short-run estimates
in Hughes et al. (2008) by 4.5; which is roughly the proportion of long-run to short-run estimates in Small and
Van Dender (2007). This calculation derives in a lower bound long-run VMT elasticity estimate with respect to
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Finally, one must also acknowledge that urban form and public transportation policies could
facilitate transition to a less intensive use of the car in the presence of gas or travel pricing
policies. In the end, although pricing measures and land-use policies should not necessarily be
seen as mutually exclusive options, the impact of each should be individually assessed.

6 Conclusions

The results of this study are based on estimates derived from an econometric procedure that
takes into account the large mass of zero car-travel observations and residential self-selection.
A M2PM with IV was implemented to analyze data from more than 7,000 HH in California.
The results from a number of specifications showed that the elasticities of VMT with respect to
residential density are considerably larger for instrumented M2PM specifications than those from
models that consider none or only one of the two correction mechanisms, revealing potential bias
from estimations based on those approaches. Our elasticities are also larger than others found
in the recent econometric literature. However, unless very large increases in residential density
are enforced, the impact of residential density would not be as large as previously suggested
from other recent agency-based reports. Our results imply that, everything else equal, a 10%
increase in residential density would reduce VMT by roughly 2%.

The importance of reducing travel not only lies on its potential to reduce GHG, but also
on the impact that this would have in terms of improving local air quality, and road traffic
and safety. Estimated externalities from such car travel side-effects can be large and optimal
taxes for the US have been estimated at about twice its current size (Parry and Small, 2005).
Although the demand for travel is inelastic to gasoline price changes, it could prove to be more
feasible and effective to introduce pricing policies coping with the externalities derived from
suboptimal car travel. Our estimates indicate that the 4% reduction in VMT to achieve the
GHG reductions from land-use policies in California would require increasing residential density
by almost 25%. On the other hand, even though recent gasoline (and thus travel) demand price
elasticity estimates show a decline, they imply that a 20% increase on top of the price of gasoline
would suffice to reduce travel by those same amounts. Importantly, even though pricing policies
might seem more suitable than modifying the built environment to reduce travel, one should not
rule out the latter group of strategies on these grounds, since they could facilitate the transition
to new travel behavior in a world with higher gasoline prices.

gas price of only -0.08 that would shift the upper bound gas increase requirement in Table 6 to 50%. On the other
hand, a very small VMT residential density elasticity such as that from Fang (2008) would require residential density
increases of 133% to achieve a 4% reduction in VMT. If we consider the -0.12 % elasticity in Brownstone and Golob
(2009) the same target would require a policy enforcing a 33% increase in residential density.
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Appendix

Table A7: Variables description

Variable Description
dr Binary variable equal to 1 if a HH member traveled by car (as a driver) on the day surveyed, and

equal to 0 otherwise
vmt Total vehicle miles traveled (as drivers) by HH members on the day surveyed
resdes Housing units per square mile in the census tract where the HH address is located
age Age of the oldest HH member
work Percentage of HH members who work
hhsize Number of HH members
nveh Number of vehicles in the HH
eduh Binary variable indicating whether the highest level of school education of a HH member is at least

a college degree or not.
inc1 Binary variable equal to 1 if the total annual income of the HH is less than $10,000, and equal to

0 otherwise
inc2 Binary variable equal to 1 if the total annual income of the HH is greater than $10,000 but less

than $25,000, and equal to 0 otherwise
inc3 Binary variable equal to 1 if the total annual income of the HH is greater than $35,000 but less

than $55,000, and equal to 0 otherwise
Continued on next page
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Table A7 - continued from previous page
Variable Description
inc4 Binary variable equal to 1 if the total annual income of the HH is greater than $35,000 but less

than $50,000, and equal to 0 otherwise
inc5 Binary variable equal to 1 if the total annual income of the HH is greater than $50,000 but less

than $75,000, and equal to 0 otherwise
inc6 Binary variable equal to 1 if the total annual income of the HH is greater than $75,000 but less

than $100,000, and equal to 0 otherwise
inc7 Binary variable equal to 1 if the total annual income of the HH is greater than $100,000 but less

than$150,000, and equal to 0 otherwise
inc8 Binary variable equal to 1 if the total annual income of the HH is greater than $150,000 ,and equal

to 0 otherwise
inc9 Binary variable equal to 1 if the HH did not report total annual income, and equal to 0 otherwise
ur Binary variable equal to 1 if the HH home address is located in an urban area, and equal to 0

otherwise
reg1 Binary variable equal to 1 if the HH home address is located in the Western Slope/Sierra Nevada

Region (Amador, Calaveras, Mariposa and Tuolumne counties) . Equals 0 otherwise
reg2 Binary variable equal to 1 if the HH home address is located in the AMBAG Region (Monterey,

San Benito and Santa Cruz counties) . Equals 0 otherwise
reg3 Binary variable equal to 1 if the HH home address is located in the MTC Region (Alameda,

Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano and Sonoma counties)
. Equals 0 otherwise

reg4 Binary variable equal to 1 if the HH home address is located in the SACOG Region (El Dorado,
El Placer, Sacramento, Sutter, Yolo, and Yuba counties) . Equals 0 otherwise

reg5 Binary variable equal to 1 if the HH home address is located in the SCAG Region (Imperial, Los
Angeles, Orange, Riverside, San Bernardino, and Ventura counties) . Equals 0 otherwise

reg6 Binary variable equal to 1 if the HH home address is located in the Rural Region (Alpine, Colusa,
Del Norte, Glenn, Humboldt, Inyo, Kings, Lake, Lassen, Madera, Mendocino, Modoc, Mono,
Nevada, Plumas, Sierra, Siskiyou, Tehama, and Trinity counties) . Equals 0 otherwise

reg7 Binary variable equal to 1 if the HH home address is located in Butte county. Equals 0 otherwise
reg8 Binary variable equal to 1 if the HH home address is located in Fresno county. Equals 0 otherwise
reg9 Binary variable equal to 1 if the HH home address is located in Kern county. Equals 0 otherwise
reg10 Binary variable equal to 1 if the HH home address is located in Merced county. Equals 0 otherwise
reg11 Binary variable equal to 1 if the HH home address is located in San Diego county. Equals 0

otherwise
reg12 Binary variable equal to 1 if the HH home address is located in San Joaquin county. Equals 0

otherwise
reg13 Binary variable equal to 1 if the HH home address is located in San Luis Obispo county. Equals 0

otherwise
reg14 Binary variable equal to 1 if the HH home address is located in Santa Barbara county. Equals 0

otherwise
reg15 Binary variable equal to 1 if the HH home address is located in Shasta county. Equals 0 otherwise
reg16 Binary variable equal to 1 if the HH home address is located in Stanislaus county. Equals 0

otherwise
Continued on next page
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Table A7 - continued from previous page
Variable Description
reg17 Binary variable equal to 1 if the HH home address is located in Tulare county. Equals 0 otherwise
uaarea Area in square miles of the urban area where the HH home address is located
prinocrmi Transit route miles of transit systems primarily serving the urban area where the HH home address

is located (ferry boats and commuter rail excluded)
trans Transit miles density in the urban area where the HH home address is located (prinocrmi/uaarea)
mix Ratio of business establishments to housing units in the zip code tabulation area where the HH

home address is located

Table A8: Comparison between original and final samples

original finalall finalurb
dr 0.8163 0.7561 0.7638
resdes* 1518.561 1570.346 2491.349
age 54.7443 53.5316 51.7816
work 0.4965 0.4999 0.5356
hhsize 2.356 2.0974 2.0593
nveh 1.9684 1.8315 1.723
eduh 0.412 0.4211 0.4344
inc1 0.043 0.0582 0.0483
inc2 0.142 0.1743 0.152
inc3 0.1317 0.1544 0.1496
inc4 0.139 0.1687 0.1684
inc5 0.1989 0.2211 0.2318
inc6 0.1086 0.1123 0.1208
inc7 0.0744 0.0783 0.0915
inc8 0.0342 0.0327 0.0376
inc9** 0.1283 0 0
ur* 0.7146 0.7206 1
reg1 0.04 0.0446 0
reg2 0.0509 0.0532 0.0512
reg3 0.0964 0.0862 0.1247
reg4 0.0576 0.0566 0.08
reg5 0.1986 0.2002 0.2599
reg6 0.143 0.1338 0
reg7 0.032 0.036 0.0317
reg8 0.0362 0.0356 0.049
reg9 0.0337 0.0344 0
reg10 0.0292 0.0331 0.0395
reg11 0.0697 0.0686 0.1191
reg12 0.0339 0.034 0.0432
reg13 0.038 0.0394 0.0163
reg14 0.0479 0.0484 0.0798

Continued on next page
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Table A8 - continued from previous page
original finalall finalurb

reg15 0.03 0.0334 0.0425
reg16 0.0315 0.0322 0.0403
reg17 0.0315 0.03 0.0227
mix* 0.0587 0.0586 0.0644
uaarea NA NA 445.6325
prinocrmi NA NA 2759.798
trans NA NA 5.7254
Observations 17040 7666 4098
Notes: *The number of observations for resdes, mix, and ur is 17,014
in the original sample because 26 HH did not report their street ad-
dress. **When observations with inc9=1 are removed from the original
sample, the number of observations drops to 14,854 and the income
dummies are more similar to those from finalall andfinalurb

Table A9: Causes leading to sample size reduction
HH in Original Sample (original) 17040
HH with speed violations and non precise geo identification of destinationsi 5702
HH with missing trip informationi 246
HH surveyed for two daysi 512
HH with further speed violations for all modesii 1302
HH with the age of a member not reported 343
HH in which maximum age is smaller than 17 5
HH with the education level of a member not reported 267
HH with no income reported 995
HH located in ZCTA where the number of business establishments is greater than the
number of housing units

2

HH in Final All Sample (finalall) 7666
HH not located in urbanized areas (i.e., located in rural areas or urban clusters) 3098
HH in urbanized areas not primarily served by transit systems 470
HH in Final Urban/Transit Sample (finalurb) 4098
Notes: finalall sample results after subtracting preceding rows from original, while finalurb after subtracting the two
rows after finalall. The deletion procedure was performed according to the ordering of this table. For instance, with
respect to the original sample more than 2000 HH did not report their incomes (compared to the 995 showed here, which
results after other deletions took place). i) Flags included in the original dataset considered. ii) Speed flags constructed
based on the following speeds (allowing a 15 minute extra trip duration for the upper bound): vehicle, motorcycle, and
transit trips for which calculated speeds were more than 70 miles per hour (mph), or less than 1 mph; bicycle trips with
mph>20; and walking trips with mph>10. Also included in this category are trips for which no duration or mode were
reported.
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